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Abstract - A dynamic analysis of the Correlation Integral (Cm)
of the Heart Rate Variability signal (HRV) was applied to 50
patients with Hypertrophic Cardiomyopathy (HCM). A group
of 55 healthy subjects was considered as a control group. The
Correlation Integral is calculated within a moving time window
in order to characterize the nonlinear dynamical behavior of
the HRV of HCM patients that cannot be described by classical
correlation dimension.
Keywords – Complexity analysis, dynamic analysis, correlation
integral.

I.  INTRODUCTION

The analysis of Heart Rate Variability (HRV) has been
relevant in the study of several cardiovascular phenomena.
In the present study Hypertrophic Cardiomyopathy (HCM)
patients are described by the Heart Rate Variability (HRV)
using complexity analysis. In HCM patients there is an
increased risk of premature death, which can occur with
little or no warning. Sudden cardiac death (SCD) can strike
at any age.

Several studies have indicated the non-linear nature of
heartbeat dynamics and cardiac function. The fluctuations in
time between beats in a healthy heart may be due to an
intrinsic variability of the autonomic nervous system control
of non-linear nature, which accounts for this chaotic
behavior, while illness is associated to an increasing
regularity or complexity decrease [1,2]. In the case of
hypertrophic cardiomyopathy patients, some attempts to
characterize this cardiac illness using some non-linear tools
like Poincaré plots and entropies have been made [3,4]. One
of the measures of the time series complexity is the
Correlation Dimension (Dc), which gives a statistical
measure of the self-similarity of the geometry of a set of
points (attractor) in a phase space [5].

Based on these concepts, this work presents a dynamic
analysis of the Correlation Integral (Cm) applied to the Heart
Rate Variability in order to characterize HCM patients. In
this study, Cm was calculated on a moving window, which
was moved along the RR file several beats successively for
all calculations. This methodology permits to analyze
complexity changes throughout time. The number of beats
(N) considered was common to both groups (HCM and
NRM), in order to obtain comparable results. The
correlation dimension based on Grassberger and Procaccia
[6] criteria was also applied to these signals without
considering the moving window.

Furthermore, the dynamic analysis of the Correlation
Integral (Cm) was applied to RR series of a patient with
cardiac arrest and a patient with aortic stenosis.

II. ANALYZED DATA

HRV signals were obtained, using software developed by
our group [7], from 24-hour ECG recordings sampled at 256
Hz of 50 patients with HCM of the NIC database (National
Institute of Cardiology, Warsaw). All patients had
QRS<120ms, no conduction abnormalities, less than
100/24h ectopic beats and did not receive medication during
recording. A group of 55 normal subjects (NRM) was
considered as a control group

In order to emphasize specific aspects of the
methodology, signals from two subjects without HCM were
also considered: CA, patient with cardiac arrest; AS, patient
with aortic stenosis. These Holter recordings were sampled
at 128 Hz and RR interval extracted using Del Mar 563
Strata Scan software.

Heart Rate Variability depends on many factors. One of
them is patient activity during recording. To achieve the
most comparable recording conditions and the best signal
quality, we have selected RR data series segments of 4 night
hours recorded approximately from 2 to 6 am, while patients
were sleeping.

III. M ETHODOLOGY

From a defined data vector (yi, i=1,…,N), a m
dimensional phase space (embedding dimension) is
constructed, according to Takens theorem [8], obtaining

Xt ≡ (yt, yt+ τ, yt+2τ,…, yt+ (m-1)τ), t = 1, …,N-(m-1)τ  (1)

where τ  is the lag, expressed as a number of beats.
In the phase space, the Correlation Integral which

measures the number of points xj that are correlated with
each other in a sphere of radius r around the points xi can be
defined by
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where N is the number of points, and Θ(z) is the Heaviside
function
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Θ(z) = 0  if  z ≤ 0
Θ(z) = 1  if  z > 0

The distance || xi - xj || between a pair of points in the
attractor has been computed as the euclidean norm
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In practice, it has been shown that it is sufficient to take
randomly only 10% of the points as reference points (Nref) to
calculate the Correlation Integral [9].

For each reference point, the distance to all other points in
the attractor is calculated and Theiler’s correction is applied
to avoid autocorrelation effects, excluding the four nearest
neighbor points in time [10].

When log2(Cm(r)) is plotted versus log2(r) (Fig. 1), the
slope of the resulting straight line, determined by a linear
regression at low r, yields the correlation dimension Dc as
was showed by Grassberger and Procaccia [6].
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Fig. 1. Correlation Integral as a function of the sphere radius (r)
for each embedding dimension.

There have been some proposals concerning the amount
of data points N needed to estimate Dc [11,12]. This
presents limitations when the Dc is calculated on a moving
window of reduced RR samples. For this reason, we propose
to estimate a correlation integral (Cm) in a moving time
window instead of using the concept of Dc. In this way,
several Cm(r) are computed for increasing values of m, and
the slopes (Sc) are determined from a scaling region of the
log-log plot, obtaining a sequence of Sc(m).

To obtain the evolution of the slopes Sc for increasing m,
a graph of the Sc(m) is plotted and an exponential model of
the type

Sc=Sc*(1-exp(-km))  (4)

is fitted. The values of Sc
* and k are estimated using the

Levenberg-Marquardt method.
The saturation value of the curve Sc

*, is the estimated
value of the Cm slope at high m of the signal (Fig. 2).
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Fig. 2. Correlation integral as a function of the embedding dimension m
with a fitted exponential curve.

This exponential model permits to calculate more
accurately the correlation integral slope at high m values
because all slopes of the correlation integrals, for all the
different embedding dimensions m, are used at the same
time. The exponential curve fit follows the asymptotic
behavior of the calculated Sc(m). Thus, it is no longer
necessary to define arbitrarily where the Sc curve becomes
sufficiently constant to yield a saturation value for Sc. The
error calculated as the mean square root of the Sc values and
the fitted curve was less than 5%, with respect to the Sc*
value.

Based on this proposed methodology we present a
dynamic analysis of the Correlation Integral (Cm) using a
moving window on the RR signal. In this approach, Cm is
calculated for a moving window of 2,000 points, which is
moved 100 samples along the signal successively for each
new calculation of the Sc. In order to obtain an accurate
measure of Sc we considered embedding dimensions m=1,
2,…,20, and the signal as belonging to a system with τ=5.

In order to emphasize specific aspects of the
methodology, the dynamic analysis of the Correlation
Integral (Cm) from signals of CA and AS patients was done
on the total night period.

The number of beats (N) considered were common to both
groups (HCM and NRM) of subjects considered, N=10,000,
in order to obtain comparable results. The correlation
dimension based on Grassberger and Procaccia [6] criteria
was also applied to these signals without considering the
moving window, on the N=10,000 beats and also during the
total 4 night hours.

IV. RESULTS

To show the usefulness of window correlation integral we
present the results obtained from RR series of a patient who
had had cardiac arrest (CA) (Fig. 3). As can be seen in the
tachogram of Fig. 3.a, long periods of high-level arrhythmia
are broken by short periods of extremely low variance
behavior. Except for a slight shift in time, approximately the
length of the time window, the dependence of the window
correlation integral is strongly correlated with the behavior
of the tachogram (Fig. 3.b). Contrarily to what one may
expect from the shape of the tachogram for this case, the
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window correlation integral slope decreases sharply during
periods of arrhythmia. This is due to the fact that in 3-
dimensional phase space, the trajectory for these periods is
extremely simple (Fig. 3.c). On the other hand, the phase
space trajectory becomes much more complex during the
low variance HRV periods (Fig. 3.d).
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Fig. 3. (a) RR series of CA patient. (b) Slopes of the correlation integral at
high m values, obtained with windows of 2,000 beats moving each window
100 beats. (c) Three-dimensional phase space trajectory of 200 beats during
the high variance of HRV. (d) Three-dimensional phase space trajectory of

200 beats during the low variance of HRV.

Fig. 4 presents the results of a patient with aortic stenosis
(AS), in which characteristic spiking in the HRV occurs.
This spiking is unusually regular (Fig. 4.a). As a result, the
windowed correlation integral slope is low and shows very
little variance (Fig. 4.b). The 3-dimensional phase space
trajectory is shown in Fig. 4.c.
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Fig. 4. (a) RR series of AS patient. (b) Slopes of the correlation integral at
high m values, obtained with windows of 2,000 beats moving each window

100 beats. (c) Three-dimensional phase space trajectory of 2,000 beats.

Fig. 5 shows the evolution through the time of the slopes
(Sc) at high embedding dimension m of the correlation
integral (Cm) of a RR signal behavior, of a HCM patient.
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Fig. 5. (a) RR series of a HCM patient. (b) Evolution of the slopes (Sc) of
the windowed correlation integral at high embedding dimensions.

(c) Three-dimensional phase space trajectory of 2,000 beats.

Table I presents the results of applying the proposed
methodology to the HCM and NRM groups. The mean
value and the standard deviation (sd) of Sc* obtained in all
studied windows characterized HCM group (mean Sc*:
10.0±0.955; sd Sc*: 1.589±0.624) with a significant level
p=0.041 and p<0.0005, respectively, when both groups were
compared. The minimum value of Sc* could differentiate the
groups (HCM: 6.603±1.755; NRM: 7.472±1.594) with a
p=0.006. No statistical significant differences were found
considering the maximum values of Sc*, however the
differences between the maximum and minimum value
(HCM: 4.876±1.409; NRM: 5.949±1.807) presented a
significant level p=0.001. The sum of the consecutive
absolutes differences of the Sc* values were also statistically
significant with p=0.026.

TABLE I
SLOPES (Sc) AT HIGH EMBEDDING DIMENSION OF THE

WINDOWED CORRELATION INTEGRAL Cm

mean±sd
groups NRM HCM p-value
mean Sc* 10.4±0.786 10.0±0.955 0.041
sd Sc* 1.186±0.456 1.589±0.624 <0.0005
min Sc* 7.472±1.594 6.603±1.755 0.006
max Sc* 12.3±0.725 12.6±0.716 n.s.
maxSc*–minSc* 4.876±1.409 5.949±1.807 0.001
∑|Sc*(i)-Sc*(i+1)| 0.389±0.067 0.426±0.089 0.026

n.s. no significant statistical level

It can be seen in Table II that Correlation Dimension (Dc)
calculated from a non-windowed correlation integral and
considering the complete night period of the RR series could
not characterize the system complexity of HCM patients.
Similarly, when using Dc to analyze 10,000 samples of the
RR series (Table III), HCM and NRM subjects were not
differentiated. However, both groups could be characterized,
in the time domain, by the mean value of the RR series and
the standard deviation (Tables II and III). Moreover, no
statistical differences were found comparing Dc from the
complete night period and 10,000 samples of the RR series.
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TABLE II
CORRELATION DIMENSION Dc OF THE RR SERIES DURING

 4 HOUR NIGHT PERIOD

mean±sd
groups NRM HCM p-value
Dc 9.721±1.346 9.249±1.896 n.s.
mean RR 960.2±132.3 1028.9±154.3 0.028
sd RR 100.9±53.4 114.8±41.8 0.023
n.s. no significant statistical level

TABLE III
CORRELATION DIMENSION DC OF THE RR SERIES

10,000 SAMPLES

mean±sd
groups NRM HCM p-value
Dc 9.503±1.196 9.013±1.781 n.s.
mean RR 958.3±131.1 1027±155.7 0.016
sd RR 101.0±45.9 116.1±40.6 0.026
n.s. no significant statistical level

V. DISCUSSION AND CONCLUSIONS

A methodology to obtain dynamic Correlation Integral of
the HRV signal has been presented. Using this
methodology, 50 patients with Hypertrophic
Cardiomyopathy and 55 subjects considered as a control
group were analyzed.

With respect to the methodology, it is important to
emphasize that the exponential fit to obtain the final value of
the Correlation Integral slope, named here Sc*, seems to be a
better approach to obtain the correct value, since it uses all
the points of the Sc(m) curve and defines the correlation
integral slope as an asymptotic value attained with
increasing embedding. The curve may be fit with a relative
low error – less than 5% of the group of HCM patients
studied here. With regard to the number of beats to analyze,
it seems that 10,000 beats give sufficient information to
calculate the evolution of Sc* consistently, if the night hours
are chosen correctly.

As many biological phenomena are complex the approach
of moving window correlation integral Cm could be an
interesting way to analyze such systems. The value of Sc*
for each window usually fluctuates around an average value
but, as may be clearly seen for the arrhythmia case CA, may
give valuable information about the changes in the dynamics
of the system. In particular, window correlation integral may
be used to detect relatively short episodes embedded in the
time series. In the case of HCM patients, changes in
complexity evaluated by the windowed correlation integral
seems to be able to characterize this group of patients.
Contrarily, the results obtained from HCM patients applying
correlation dimension Dc without considering a moving
window, shows that Dc does not characterize heart rate
variability in HCM patients.
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